Deos

DDC-I Announces Deos Multicore Platform for Jacinto 7 Developers Targeting High Assurance Aerospace Market

Phoenix, AZ – November 17, 2021 – DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced that it will port its Deos DO-178C safety-critical real-time operating system to Texas Instruments’ Jacinto™ 7 family of processors. Jacinto 7 processors running Deos™ provide an ideal platform for developing, deploying and certifying DO-178C avionics software with the most demanding I/O, networking, and control requirements.

The Jacinto 7 processor family features a heterogeneous architecture optimized for control node and intelligent sensor applications. Featuring Arm® Cortex®-A72 cores and a mix of fixed and floating-point DSP cores, Jacinto 7 processors are also equipped with matrix multiplication accelerators for machine learning, integrated ISP and vision processing. While primarily intended for automotive and industrial applications, the Jacinto 7 processor family’s integrated feature set also makes it an excellent choice for avionics systems.

“Jacinto 7 processors provide a unique blend of high performance multicore computing, co-processing and versatile I/O that make it superb for avionics applications requiring data fusion, array processing, and other advanced control and sensor functionality,” said Greg Rose, vice president of marketing and product management at DDC-I. “Deos cache partitioning, time/space partitioning, and system redundancy features allow avionics developers to take full advantage of the Jacinto 7 processors’ multicore computing, I/O, coprocessing, and security features while reducing worst-case execution time to achieve the highest level of safety-critical operation.”

Deos is a safety-critical embedded RTOS that uses patented technology to deliver the highest possible CPU utilization on multi-core processors, including a broad range of Arm®-based processors and cores. First certified to DO-178 DAL A in 1998, Deos features hard real-time response, time and space partitioning, ARINC-653 and POSIX interfaces, all in a FACE™ Conformant Safety Extended and Safety Base Profiles. With an emphasis on multicore applications, Deos scales well in the gamut of avionics applications, from highly deterministic deeply embedded FADECs (Full Authority Digital Engine Control) and flight controls to complex high throughput displays and mission computers.

DDC-I’s SafeMC™ technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multi-core performance without compromising safety-critical task response and guaranteed execution time. SafeMC employs a bound multiprocessing (BMP) architecture, safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multi-core systems. Together with Deos’ unique redundancy features, avionics systems developers can develop highly robust systems using Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST).

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, and Ada application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit http://www.ddci.com/pr2112.

VLAB Works and DDC-I Announce Virtual Software Platform for NXP T2080 QDS Board

Austin TX, and Phoenix, AZ – November 9th 2021 – ASTC’s VLAB Works and DDC-I today announced the availability of a new T2080 QDS VLAB Virtual Machine for Development and Test (VLAB VDM), running DDC-I’s Deos™ DO-178C avionics operating system on a range of IT host platforms, such as Desktop PCs, Servers and Cloud. The T2080 QDS VLAB VDM provides a software-only representation of the popular NXP T2080 QDS hardware board that runs the same unmodified software as the physical board and is now available for licensing from VLAB Works. It can run either standalone as a virtual machine or in conjunction with advanced VLAB user tools.

VLAB Works and DDC-I have collaborated to validate seamless Deos operation on this new platform. This integration effort has enabled unmodified software builds running Deos on VLAB VDM’s for development and test convenience, before moving the same binary to hardware for final validation and product deployment.

“Working within a purely virtual environment in VLAB and on your IT host infrastructure frees designers from the constraints of embedded hardware-based software development, enabling continuous development, debug, integration and test of target compiled software from any location,” said Ross Dickson, Global Product Manager for VLAB. “Easy platform maintenance and scalability of virtualization and test performance are provided along with the capability for multi-board and system-level extensions in a software-only environment. With VLAB your digital twin can be binary compatible.”

“Our Deos safety-critical RTOS  running atop VLAB is ideal for avionics developers targeting the NXP T2080 QDS hardware who want to accelerate the development process with a binary compatible virtual platform,” said Greg Rose, vice president of marketing and product management at DDC-I. “The platform has everything avionics designers need to develop, simulate, and test production code hosted on Deos prior to final validation and deployment on the target hardware.”

VLAB supports the T2080 QDS with:

  • Choice of VLAB user environments to suit your needs, from standalone configurations, to a full development IDE with a suite of user tools, to batch mode supporting parallel, continuous integration testing.
  • Fully scriptable environment for workflow automation providing compatibility with automation frameworks including Jenkins, Git Labs, and others.
  • Scalable test and validation infrastructure via operational IT or cloud resources rather than single use capital intensive embedded hardware.
  • Advanced non-intrusive software analysis tools including code profiling, tracing, and coverage (statement, function, branch & MC/DC), optimization, and many more. Connection to 3rd party tools including debuggers, co-simulation environments, system analyzers, system simulations, hardware in the loop test benches, and more.
  • Fault injection frameworks enabling fault isolation and recovery testing and enabling corner case testing via direct branch manipulation.

Deos is a safety-critical embedded RTOS that employs patented cache partitioning, memory pools, and safe scheduling to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS on multi-core processors. First certified to DO-178 DAL A in 1998, Deos provides a FACE™ Conformant Safety Extended and Safety Base Profiles that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

SafeMC™ technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multi-core performance without compromising safety-critical task response and guaranteed execution time. SafeMC employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multi-core systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

 

VLAB Works is an ASTC Pty Ltd company – our core mission is to reduce the barriers to the broader application of modeling, simulation, and all-in-software product prototyping, providing new alternatives to traditional industry development tools and methodologies. With VLAB, companies can significantly reduce the complexity and cost of adoption and application of these technologies in their internal development operations. Additionally, VLAB customers can significantly reduce the cost of support to their own customers and partners in the design ecosystem. This end-to-end value proposition of VLAB to the entire development process helps companies achieve greater return on investment.

For more information on VLAB and VLAB Virtual Platforms, please see www.vlabworks.com or contact sales@vlabworks.com

 

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, and Ada application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit http://www.ddci.com/pr2111.

DDC-I Showcases Industry’s First FACE 3.1 Conformant RTOS at Aerospace Tech Week

Booth #900

Phoenix, AZ. Toulouse, France. October 29, 2021.  DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced that it will be at Aerospace Tech Week demonstrating the industry’s first RTOS to pass Operating System Segment (OSS) Conformance Testing for the Safety Base and Safety Extended Profiles of the FACE Technical Standard, Edition 3.1. DDC-I will also present a technical paper on Accelerating Avionics Safety and Airworthiness Using the FACE Architecture.

Aerospace Tech Week will be held in Toulouse, France November 3-4. DDC-I will exhibit in Booth # 900 directly adjacent to the Open Group FACE Consortium Pavilion, the first public Future Airborne Compatibility Environment (FACE) event in Europe.  Attendance at this event expands the exposure of the FACE capabilities and associated software portability into NATO countries and strengthens its relationships with global coalition partners.

Deos™ is a certified FACE conformant OSS on ARM, PowerPC and Intel processors.  At the show DDC-I will provide a live demonstration of its Deos SafeMC™ multicore kernel running on a quad core NXP Layerscape ARM Cortex-A53 processor.  To highlight its ARINC 653 and FACE application portability, Deos will run RTI’s FACE aligned DDS connectivity software as the Transport Services Segment (TSS). The demo will also highlight Deos development tools, which provide visibility into the resource availability and timing of the multicore system.

“FACE is gaining market acceptance as a standard framework for software portability that reduces cost and speeds time to market by fostering standard, open interfaces that enhance portability, interoperability, and reuse,” said Greg Rose, vice president of marketing and product management at DDC-I. “We’re excited to be involved with this first FACE event at Aerospace Tech Week and look forward to introducing the avionics community to the advancements in portability of our safety-critical DO-178C DAL A verified RTOS, the industry’s first FACE 3.1 conformant COTS RTOS certified on ARM, PowerPC, and Intel processors.”

The Deos RTOS Platform for FACE combines the time and space partitioned Deos RTOS and SafeMC multi-core technology with RTEMS (Real Time Executive for Multiprocessor Systems), a mature, deterministic, open systems, hard real-time POSIX executive. The integrated platform combines the strengths and pedigree of both ARINC-653 and POSIX RTOSs, providing the industry standard interfaces and feature set required for conformance with the FACE Technical Standard, Safety Extended and Safety Base Operating System Profiles, all in a time- and space-partitioned, hard real-time, multi-core execution model.

About Deos

Deos is a safety-critical embedded RTOS that employs patented cache partitioning, memory pools, and safe scheduling to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS on multi-core processors. First certified to DO-178 DAL A in 1998, Deos provides a FACE™ Conformant Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

SafeMC technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multi-core performance without compromising safety-critical task response and guaranteed execution time. SafeMC employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multi-core systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

More on Aerospace Tech Week

Aerospace Tech Week is uniquely positioned to accelerate post-Covid recovery in the aviation/airline and A&D industries. When airplanes are fully back in the skies, the right technologies and innovations will not only make them safer, but also more efficient, compliant and future proof. Aerospace Tech week, in conjunction with Aerospace Tech Review, provides a perfect venue for bringing airlines and leading tech providers together, with laser-focused conference sessions and networking opportunities for its participating 300+ airlines, 1500+ OEMs, and 150+ global technology providers.

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, and Ada application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit http://www.ddci.com/pr2110.

DDC-I’s Deos RTOS is First to Receive OSS Conformance Certification for FACE™ Technical Standard, Edition 3.1

Phoenix, AZ. October 22, 2021.  DDC-I, a leading supplier of software and professional services for mission and safety-critical applications, today announced that its Deos™ DO-178C Design Assurance Level A (DAL A) safety-critical real-time operating system is the first RTOS to receive the Future Airborne Capability Environment™ (FACE) Conformance Certificate for the FACE Technical Standard, Edition 3.1. The certification covers the Safety Extended and Safety Base Profiles for the Operating System Segment (OSS). The Safety Extended Profile, which adds support for TCP/IP communications, multi-process support, and expanded POSIX capability (80 extra functions), is a superset of the functionality required by the Safety Base and Security Profiles.

The Deos RTOS Platform for FACE Technical Standard 3.1 combines the time and space partitioned Deos RTOS and SafeMC™ multi-core technology with RTEMS (Real Time Executive for Multiprocessor Systems), a mature, deterministic, open systems, hard real-time POSIX executive. The integrated platform combines the strengths and pedigree of both ARINC-653 and POSIX RTOSs, providing the industry standard interfaces and feature set required for conformance with the FACE Technical Standard, Safety Extended and Safety Base Operating System Profiles, all in a time and space partitioned, hard real-time, multi-core execution model.

“DDC-I has been a pioneer in providing mission and safety-critical software to the military and aerospace industry for over 35 years,” said Greg Rose, vice president of marketing and product management at DDC-I. “We’re proud to deliver the industry’s first FACE 3.1-Conformant OSS to the avionics community and look forward to supporting FACE standardization efforts with an open, conformant platform that combines best-in-class performance and safety certifiability with enhanced application portability.”

First certified to DO-178 DAL A in 1998, Deos is a safety-critical embedded RTOS that employs patented technology to deliver the highest possible CPU utilization to avionics systems developers. SafeMC technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multi-core performance without compromising safety critical task response and guaranteed execution time. SafeMC employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multi-core systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

 

About The Open Group FACE Consortium

The Future Airborne Capability Environment (FACE) Consortium, a consortium of The Open Group, is an aviation-focused professional group made up of U.S. industry suppliers, customers and users. The FACE Consortium provides a vendor-neutral forum for industry and the U.S. government to work together to develop and consolidate the open standards, best practices, guidance documents and business models necessary to achieve these results.  For more information visit: www.opengroup.org/face.

 

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission and safety critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, and Ada application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit https://www.ddci.com/pr2109.

DDC-I and LDRA Offer Free October 5th Webinar, Creating a Multi-core Platform for Safety Critical Avionics that Meets the CAST-32A Objectives

Phoenix, AZ. October 4, 2021.  DDC-I, a leading supplier of software and professional services for mission and safety-critical applications, today announced a complimentary webinar focused on creating a multi-core platform for safety critical avionics. The one-hour webinar, titled Overcoming the Challenges of Meeting CAST-32A Objectives for Avionics Software, will highlight techniques such as configuring the memory architecture to minimize cache thrashing, and scheduling applications across multiple cores to minimize shared resource conflicts. The webinar will also showcase automated analysis tools for worst case timing and code coverage aggregation that help manage compliance with the CAST-32A objectives.

The webinar will be held on Tuesday October 5, 2021 at 10:00 AM US Eastern Time.
Register and view the complete abstract & register at https://onlinexperiences.com/Launch/QReg/ShowUUID=A813C546-0AD6-4CF9-B9D0-A6AEDD768620&AffiliateData=DDC-I

“This webinar is a must see for avionics developers who want to utilize the latest multi-core technology while meeting the worst-case execution requirements defined in the FAA’s CAST-32A position paper for Multi-core Processors,” said Greg Rose, vice president of marketing and product management at DDC-I. “Our Deos SafeMC technology coupled with LDRA’s advanced analysis tools uniquely resolves the CAST-32A multicore objectives, enabling developers to achieve unmatched performance and determinism for safety-critical applications.”

Deos™ is a safety-critical embedded RTOS that employs patented slack scheduling, memory pools and cache partitioning to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS. First certified to DO-178 DAL A in 1998, Deos provides a FACE Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

SafeMC™ technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multicore performance without compromising safety-critical task response and guaranteed execution time. SafeMC™ employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multicore systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, and Ada application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit https://www.ddci.com/pr2108.

DDC-I, RTI, and wolfSSL Offer Free September 30 Webinar on Mission-Critical Avionics Security

Phoenix, AZ. September 29, 2021.  DDC-I, a leading supplier of software and professional services for mission and safety-critical applications, today announced a complimentary “Triple Threat” webinar” featuring DDC-I’s Deos safety-critical Deos real-time operating system, RTI’s Connext DDS, and wolfSSL FIPS 140-2 certified cryptography. The one-hour webinar, titled Beyond DO-178: Building Secure Solutions for Future Aviation, will focus on how to use this integrated platform to meet mission-critical communication security goals for building secure future aviation systems.

The webinar will be held on Thursday September 30, 2021 at 10:00 AM US Pacific Time
View the complete abstract & register at https://us02web.zoom.us/webinar/register/6216306237459/WN_BF_MU5mgQ6eGRDsMWXVSGg

DDC-I’s Deos, the only certifiable time- and space-partitioned FACE Conformant RTOS created using RTCA DO-178, Level A processes, will host the integrated communications and security platform. RTI Connext DDS, featuring the industry’s first certified conformant FACE™ Transport Services Segment (TSS), provides the scalable, low-latency software connectivity framework required for rapid interoperability of FACE system components and networked platforms. The wolfSSL embedded SSL library, a lightweight, portable, C language-based SSL/TLS library for embedded and RTOS environments, provides the FIPS 140-2 certified cryptography.

“Avionics developers who want to get to market fast with a secure, networked FACE conformant platform will find this webinar invaluable,” said Greg Rose, vice president of marketing and product management at DDC-I. “This webinar touches all of the bases, from the RTOS platform to the TSS connectivity framework and FIPS 140-2 cryptography.”

Deos is a safety-critical embedded RTOS that employs patented slack scheduling, memory pools and cache partitioning to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS. First certified to DO-178 DAL A in 1998, Deos provides a FACE Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

SafeMC™ technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multicore performance without compromising safety-critical task response and guaranteed execution time. SafeMC™ employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multicore systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, and Ada application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit https://www.ddci.com/pr2107.

DDC-I and Intel Bring Safety-Critical Multi-core Computing to Avionics Displays and High Compute Sensors

Deos real-time operating system provides deterministic, low-jitter, high-performance, DO-178C multi-core platform for 11th Generation Intel® Core™ Processors

 

Phoenix, AZ – September 21, 2021 – DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced that it has teamed with Intel to port its Deos™ DO-178C safety-critical real-time operating system and Eclipse-based development tools to Intel’s 11th Generation Intel® Core™ i7 multi-core application processor. Intel Core i7 processors running Deos provide an excellent platform for a wide number of applications, including displays and high compute smart sensors.

Deos has supported the x86 processor architecture with DAL-A artifacts since 1998, with thousands of x86-based Deos systems certified and flying today. With Intel Core i7 processors, Deos extends its existing support for the Intel Atom®, Intel® Xeon®, and other i7 architectures, providing a common certification package (at the binary level) and development tools across all these processors, including our DO-330 qualified tools.

The Intel Core i7 SoC application processor is the 11th generation of Intel® Core™ architecture. Combining 4 CPU cores operating at up to 4.4 GHz with an Intel® Iris® Xe graphics processor and up to 12 Mbytes of cache, Intel Core i7 features Enhanced Media (AV1 Codec/12b support via 2 VDBOX) and AI/DL Instruction Sets with VNNI support for CV/AI and OpenVINO. Intel Core i7 also provides four DP/HDMI outputs (four 4K or two 8K resolution display outputs), 4 PCIe Gen4 Lanes (CPU), and 12 HSIO (PCH) channels with support for 802.11ac, PCIe Gen 3, and USB4.

“Intel Core i7’s high-performance multi-core architecture, on-chip graphics, and AI processing, together with the availability of certification data, makes it very attractive to our avionics customers,” said Greg Rose, vice president of marketing and product management at DDC-I. “Our SafeMC™ multi-core technology leverages many of these capabilities, employing techniques like cache partitioning, memory pools, time-space partitioning and slack scheduling. Together they provide an efficient, robust, and deterministic platform that builds on Intel’s technology to maximize performance while providing a certifiable multi-core environment by reducing multi-core interference and worst-case response.”

“Intel Core i7 offers a high degree of functional integration, making it ideal for e-Cockpit advanced displays and high-compute smart sensors,” added Tony Franklin, General Manager of Federal and Aerospace group at Intel. “DDC-I has been a long-time supporter of the x86 architecture, and we are pleased to be working with them again to offer our joint avionics customers a world-class multi-core safety-critical RTOS platform for our 11th Generation Intel® Core™ i7 processors.”

Deos is a safety-critical embedded RTOS that employs patented cache partitioning, memory pools, and safe scheduling to deliver a certifiable system with higher CPU utilization than any other certifiable safety-critical COTS RTOS on multi-core processors. First certified to DO-178 DAL A in 1998, Deos provides a FACE™ Conformant Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

Deos runs on a broad range of processors. With an emphasis on multi-core applications, Deos scales well in the gamut of avionics applications, from highly deterministic deeply embedded FADECs (Full Authority Digital Engine Control) and flight controls to complex high throughput displays and mission computers.

SafeMC technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multi-core performance without compromising safety-critical task response and guaranteed execution time. SafeMC employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multi-core systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

 

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, and Ada application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit http://www.ddci.com/pr2106.

DDC-I Demonstrates FACE Conformant RTOS Platform at US Army FACE and SOSA Expo and Technical Interchange Meeting

Demo will feature FACE Technical Standard 3.0 Conformant Deos RTOS with SafeMC Multicore Technology

Booth #33

Phoenix, AZ. September 10, 2021.  DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced that it will demonstrate Deos™, a FACE conformant RTOS solution, at the US Army FACE™ and SOSA™ Expo and Technical Interchange Meeting (TIM), Booth #33, which will be held on September 14, 2021 at the Von Braun Center in Huntsville, AL.

The U.S. Army – FACE and SOSA TIM, hosted by the U.S. Army, is an important opportunity to discover new advancements and the progress being made for functionality and interoperability of modular open system environments. The event features DoD leaders and members in the Future Airborne Capability Environment (FACE) and the Sensor Open System Architecture (SOSA) Consortia. The TIM is open to the public and free to attend. 

At the TIM, DDC-I will participate in the PEO AVN Open Systems Demo, showcasing a FACE-aligned data concentrator unit (DCU) utilizing the I/O Services Segment (IOS), Platform Specific Services Segment (PSSS), and Transport Services Segment (TSS) executing on the Deos RTOS, including its SafeMC™ multicore technology, as the Operating System Segment (OSS). Deos SafeMC provides a FACE Safety Base Profile that delivers hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

In addition to participating in the TIM Open Systems Demo, DDC-I will provide a live demonstration of the BALSA architecture running on Deos in a POSIX partition. See the demo in the exhibit hall at Booth #33.

“We’re excited to be working with our partners and the FACE Consortium to offer solutions that deliver maximum portability and safety criticality following the guidance of FACE and the Modular Open Systems Approach (MOSA)” said Greg Rose, vice president of marketing and product management at DDC-I. “Much like the primary goals of FACE and MOSA our safety-critical DO-178C DAL A verified RTOS, Deos, has been designed to enable software reuse and applications portability since its first certification baseline in 1998.”

Deos is a safety-critical embedded RTOS that employs patented cache partitioning, memory pools, and safe scheduling to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS on multi-core processors. First certified to DO-178 DAL A in 1998, Deos provides a FACE™ Conformant Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

SafeMC™ technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multi-core performance without compromising safety-critical task response and guaranteed execution time. SafeMC employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multi-core systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

For more information about the FACE and SOSA Expo and TIM, please visit https://meet.opengroup.org/event/TIM/2021-Sep-14.  For more info on the FACE and SOSA Consortia, please visit:  www.opengroup.org/face and www.opengroup.org/sosa.

About DDC-I, Inc. DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, and Ada application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit http://www.ddci.com/pr2105.

DDC-I and LDRA Accelerate Compliance for Multicore Aerospace Systems

Integration delivers powerful, efficient means of developing, verifying, and hosting production code in safety-critical cockpit environments requiring software verified to the guidance of DO-178C/ED-12C

 

Phoenix, AZ – August 18, 2021 – DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced an enhanced integration between the Deos safety-critical RTOS and LDRA’s automated software verification, source code analysis, and unit testing tools for aerospace and defense applications. The integrated solution enables avionic system manufacturers to quickly and cost-effectively develop, debug, test, and deploy software that can be readily verified to the most demanding guidance of DO-178C/ED-12C Design Assurance Level (DAL A).

With the completion of this integration, the latest LDRA tool suite now supports the latest version of DDC-I’s Deos™ safety-critical real-time operating system (RTOS) with its SafeMC™ multicore technology. The LDRA tool suite provides enhancements for source code static analysis, software dynamic analysis (including MC/DC coverage on the host and target), and software unit testing on the host and target. Together, these enhancements improve code quality, safety, and security, as well as reduce testing time and cost. They also help developers manage and achieve compliance for increasingly complex safety-critical cockpit applications that utilize emerging technologies like modular avionics and multicore processors to build safer, more economical, more capable aircraft.

“The integration of Deos with the LDRA tool suite gives avionics developers the platform they need for rapid prototyping, testing, certification and deployment of modular, reusable, safety-critical applications that comply with DO-178C and FACE,” said Greg Rose, vice president of marketing and product management at DDC-I. “The updated Deos and LDRA integration should prove especially attractive to developers who want to utilize the latest multicore technology while addressing worst-case execution requirements as defined in the FAA’s CAST-32A position paper for Multi-core Processors.”

“Proving the avionics system is properly partitioned to avoid interference from competing cores is critical, yet it’s a nearly impossible challenge without the proper development and testing tools,” said Ian Hennell, Operations Director, LDRA. “Using the LDRA/DDC-I integration, developers can ensure the software is safe and meets the most demanding avionics standards such as DO-178C and the Future Airborne Capability EnvironmentTM (FACE) Technical Standard.”

To facilitate the development and testing of software that conforms with safety-critical standards such as DO-178C/ED-12C, and portability and interoperability standards such as the FACE Technical Standard, the integrated Deos/LDRA integration provides:

  • Full source-code coverage analysis (under Deos SafeMC).
  • An efficient unit testing harness for fully automated unit and regression testing (also under Deos with SafeMC).
  • The ability to analyze and visualize coding standards compliance within the OpenArbor IDE.
  • Support for x86, PowerPC, and ARM single and multicore processors.
  • Compliance with industry- and user-defined coding standards such as MISRA and CERT.
  • Automated test case, harness and stub generation for robustness testing with the LDRA tool suite.
  • Automatic production of software certification and approval evidence underpinned by LDRA’s ISO 9001:2015 certified Quality Management System, and the LDRA tool suite’s TÜV SÜD and SGS-TÜV Saar certification.

Deos is a safety-critical embedded RTOS that employs patented cache partitioning, memory pools, and safe scheduling to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS on multi-core processors. First certified to DO-178 DAL A in 1998, Deos provides a FACE™ Conformant Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

SafeMC™ technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multi-core performance without compromising safety-critical task response and guaranteed execution time. SafeMC employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multi-core systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, and Ada application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit04http://www.ddci.com/pr2104.

DDC-I Expands with New Sales Office in Huntsville; Adds Regional Sales Manager

Phoenix, AZ. May 25, 2021.  DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced that it has expanded its operations in the southeast region with a new office in Huntsville, Alabama. The new office will focus on the burgeoning military/aerospace sector in the Huntsville area with an emphasis on providing COTS solutions based on dominant interoperability standards such as the Future Airborne Capability Environment (FACE™) and MOSA. The office will be headed by Rusty DeShazo, a 30-year veteran in the military/aerospace and commercial embedded systems sectors.

“We are excited to add Rusty to the team, expand and solidify our operations in the Huntsville area,” said Bob Morris, president/CEO at DDC-I. “Huntsville and the surrounding areas are home to a number of major mil/aero installations, and our Deos™ DO-178C RTOS is the preferred platform for developers of advanced avionic subsystems that require a portable, upgradeable COTS solution that delivers best-in-class safety-critical performance, FACE™ 3.0 conformance and rapid safety certifiability.”

Huntsville, Alabama is home to the Redstone Arsenal, which includes the US Army Aviation and Missile Command, US Army DEVCOM AvMC, Missile Defense Agency and NASA’s Marshall Space Flight Center. Alabama is also home to the Anniston Army Depot, Fort Rucker, and Maxwell-Gunter AFB, with the Pensacola Naval Air Station close by.

Deos is a safety-critical embedded RTOS that employs patented cache partitioning, memory pools, and safe scheduling to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS on multi-core processors. First certified to DO-178 DAL A in 1998, Deos provides a FACE™ Conformant Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

SafeMC™ technology for Deos extends its advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multi-core performance without compromising safety-critical task response and guaranteed execution time. SafeMC employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multi-core systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, Ada, and JOVIAL application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit http://www.ddci.com/pr2103.