DO-178

DDC-I Showcases Industry’s First FACE 3.1 Conformant RTOS at Aerospace Tech Week

Booth #900

Phoenix, AZ. Toulouse, France. October 29, 2021.  DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced that it will be at Aerospace Tech Week demonstrating the industry’s first RTOS to pass Operating System Segment (OSS) Conformance Testing for the Safety Base and Safety Extended Profiles of the FACE Technical Standard, Edition 3.1. DDC-I will also present a technical paper on Accelerating Avionics Safety and Airworthiness Using the FACE Architecture.

Aerospace Tech Week will be held in Toulouse, France November 3-4. DDC-I will exhibit in Booth # 900 directly adjacent to the Open Group FACE Consortium Pavilion, the first public Future Airborne Compatibility Environment (FACE) event in Europe.  Attendance at this event expands the exposure of the FACE capabilities and associated software portability into NATO countries and strengthens its relationships with global coalition partners.

Deos™ is a certified FACE conformant OSS on ARM, PowerPC and Intel processors.  At the show DDC-I will provide a live demonstration of its Deos SafeMC™ multicore kernel running on a quad core NXP Layerscape ARM Cortex-A53 processor.  To highlight its ARINC 653 and FACE application portability, Deos will run RTI’s FACE aligned DDS connectivity software as the Transport Services Segment (TSS). The demo will also highlight Deos development tools, which provide visibility into the resource availability and timing of the multicore system.

“FACE is gaining market acceptance as a standard framework for software portability that reduces cost and speeds time to market by fostering standard, open interfaces that enhance portability, interoperability, and reuse,” said Greg Rose, vice president of marketing and product management at DDC-I. “We’re excited to be involved with this first FACE event at Aerospace Tech Week and look forward to introducing the avionics community to the advancements in portability of our safety-critical DO-178C DAL A verified RTOS, the industry’s first FACE 3.1 conformant COTS RTOS certified on ARM, PowerPC, and Intel processors.”

The Deos RTOS Platform for FACE combines the time and space partitioned Deos RTOS and SafeMC multi-core technology with RTEMS (Real Time Executive for Multiprocessor Systems), a mature, deterministic, open systems, hard real-time POSIX executive. The integrated platform combines the strengths and pedigree of both ARINC-653 and POSIX RTOSs, providing the industry standard interfaces and feature set required for conformance with the FACE Technical Standard, Safety Extended and Safety Base Operating System Profiles, all in a time- and space-partitioned, hard real-time, multi-core execution model.

About Deos

Deos is a safety-critical embedded RTOS that employs patented cache partitioning, memory pools, and safe scheduling to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS on multi-core processors. First certified to DO-178 DAL A in 1998, Deos provides a FACE™ Conformant Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

SafeMC technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multi-core performance without compromising safety-critical task response and guaranteed execution time. SafeMC employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multi-core systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

More on Aerospace Tech Week

Aerospace Tech Week is uniquely positioned to accelerate post-Covid recovery in the aviation/airline and A&D industries. When airplanes are fully back in the skies, the right technologies and innovations will not only make them safer, but also more efficient, compliant and future proof. Aerospace Tech week, in conjunction with Aerospace Tech Review, provides a perfect venue for bringing airlines and leading tech providers together, with laser-focused conference sessions and networking opportunities for its participating 300+ airlines, 1500+ OEMs, and 150+ global technology providers.

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, and Ada application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit http://www.ddci.com/pr2110.

DDC-I’s Deos RTOS is First to Receive OSS Conformance Certification for FACE™ Technical Standard, Edition 3.1

Phoenix, AZ. October 22, 2021.  DDC-I, a leading supplier of software and professional services for mission and safety-critical applications, today announced that its Deos™ DO-178C Design Assurance Level A (DAL A) safety-critical real-time operating system is the first RTOS to receive the Future Airborne Capability Environment™ (FACE) Conformance Certificate for the FACE Technical Standard, Edition 3.1. The certification covers the Safety Extended and Safety Base Profiles for the Operating System Segment (OSS). The Safety Extended Profile, which adds support for TCP/IP communications, multi-process support, and expanded POSIX capability (80 extra functions), is a superset of the functionality required by the Safety Base and Security Profiles.

The Deos RTOS Platform for FACE Technical Standard 3.1 combines the time and space partitioned Deos RTOS and SafeMC™ multi-core technology with RTEMS (Real Time Executive for Multiprocessor Systems), a mature, deterministic, open systems, hard real-time POSIX executive. The integrated platform combines the strengths and pedigree of both ARINC-653 and POSIX RTOSs, providing the industry standard interfaces and feature set required for conformance with the FACE Technical Standard, Safety Extended and Safety Base Operating System Profiles, all in a time and space partitioned, hard real-time, multi-core execution model.

“DDC-I has been a pioneer in providing mission and safety-critical software to the military and aerospace industry for over 35 years,” said Greg Rose, vice president of marketing and product management at DDC-I. “We’re proud to deliver the industry’s first FACE 3.1-Conformant OSS to the avionics community and look forward to supporting FACE standardization efforts with an open, conformant platform that combines best-in-class performance and safety certifiability with enhanced application portability.”

First certified to DO-178 DAL A in 1998, Deos is a safety-critical embedded RTOS that employs patented technology to deliver the highest possible CPU utilization to avionics systems developers. SafeMC technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multi-core performance without compromising safety critical task response and guaranteed execution time. SafeMC employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multi-core systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

 

About The Open Group FACE Consortium

The Future Airborne Capability Environment (FACE) Consortium, a consortium of The Open Group, is an aviation-focused professional group made up of U.S. industry suppliers, customers and users. The FACE Consortium provides a vendor-neutral forum for industry and the U.S. government to work together to develop and consolidate the open standards, best practices, guidance documents and business models necessary to achieve these results.  For more information visit: www.opengroup.org/face.

 

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission and safety critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, and Ada application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit https://www.ddci.com/pr2109.

DDC-I and Intel Bring Safety-Critical Multi-core Computing to Avionics Displays and High Compute Sensors

Deos real-time operating system provides deterministic, low-jitter, high-performance, DO-178C multi-core platform for 11th Generation Intel® Core™ Processors

 

Phoenix, AZ – September 21, 2021 – DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced that it has teamed with Intel to port its Deos™ DO-178C safety-critical real-time operating system and Eclipse-based development tools to Intel’s 11th Generation Intel® Core™ i7 multi-core application processor. Intel Core i7 processors running Deos provide an excellent platform for a wide number of applications, including displays and high compute smart sensors.

Deos has supported the x86 processor architecture with DAL-A artifacts since 1998, with thousands of x86-based Deos systems certified and flying today. With Intel Core i7 processors, Deos extends its existing support for the Intel Atom®, Intel® Xeon®, and other i7 architectures, providing a common certification package (at the binary level) and development tools across all these processors, including our DO-330 qualified tools.

The Intel Core i7 SoC application processor is the 11th generation of Intel® Core™ architecture. Combining 4 CPU cores operating at up to 4.4 GHz with an Intel® Iris® Xe graphics processor and up to 12 Mbytes of cache, Intel Core i7 features Enhanced Media (AV1 Codec/12b support via 2 VDBOX) and AI/DL Instruction Sets with VNNI support for CV/AI and OpenVINO. Intel Core i7 also provides four DP/HDMI outputs (four 4K or two 8K resolution display outputs), 4 PCIe Gen4 Lanes (CPU), and 12 HSIO (PCH) channels with support for 802.11ac, PCIe Gen 3, and USB4.

“Intel Core i7’s high-performance multi-core architecture, on-chip graphics, and AI processing, together with the availability of certification data, makes it very attractive to our avionics customers,” said Greg Rose, vice president of marketing and product management at DDC-I. “Our SafeMC™ multi-core technology leverages many of these capabilities, employing techniques like cache partitioning, memory pools, time-space partitioning and slack scheduling. Together they provide an efficient, robust, and deterministic platform that builds on Intel’s technology to maximize performance while providing a certifiable multi-core environment by reducing multi-core interference and worst-case response.”

“Intel Core i7 offers a high degree of functional integration, making it ideal for e-Cockpit advanced displays and high-compute smart sensors,” added Tony Franklin, General Manager of Federal and Aerospace group at Intel. “DDC-I has been a long-time supporter of the x86 architecture, and we are pleased to be working with them again to offer our joint avionics customers a world-class multi-core safety-critical RTOS platform for our 11th Generation Intel® Core™ i7 processors.”

Deos is a safety-critical embedded RTOS that employs patented cache partitioning, memory pools, and safe scheduling to deliver a certifiable system with higher CPU utilization than any other certifiable safety-critical COTS RTOS on multi-core processors. First certified to DO-178 DAL A in 1998, Deos provides a FACE™ Conformant Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

Deos runs on a broad range of processors. With an emphasis on multi-core applications, Deos scales well in the gamut of avionics applications, from highly deterministic deeply embedded FADECs (Full Authority Digital Engine Control) and flight controls to complex high throughput displays and mission computers.

SafeMC technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multi-core performance without compromising safety-critical task response and guaranteed execution time. SafeMC employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multi-core systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

 

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, and Ada application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit http://www.ddci.com/pr2106.

DDC-I Demonstrates FACE Conformant RTOS Platform at US Army FACE and SOSA Expo and Technical Interchange Meeting

Demo will feature FACE Technical Standard 3.0 Conformant Deos RTOS with SafeMC Multicore Technology

Booth #33

Phoenix, AZ. September 10, 2021.  DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced that it will demonstrate Deos™, a FACE conformant RTOS solution, at the US Army FACE™ and SOSA™ Expo and Technical Interchange Meeting (TIM), Booth #33, which will be held on September 14, 2021 at the Von Braun Center in Huntsville, AL.

The U.S. Army – FACE and SOSA TIM, hosted by the U.S. Army, is an important opportunity to discover new advancements and the progress being made for functionality and interoperability of modular open system environments. The event features DoD leaders and members in the Future Airborne Capability Environment (FACE) and the Sensor Open System Architecture (SOSA) Consortia. The TIM is open to the public and free to attend. 

At the TIM, DDC-I will participate in the PEO AVN Open Systems Demo, showcasing a FACE-aligned data concentrator unit (DCU) utilizing the I/O Services Segment (IOS), Platform Specific Services Segment (PSSS), and Transport Services Segment (TSS) executing on the Deos RTOS, including its SafeMC™ multicore technology, as the Operating System Segment (OSS). Deos SafeMC provides a FACE Safety Base Profile that delivers hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

In addition to participating in the TIM Open Systems Demo, DDC-I will provide a live demonstration of the BALSA architecture running on Deos in a POSIX partition. See the demo in the exhibit hall at Booth #33.

“We’re excited to be working with our partners and the FACE Consortium to offer solutions that deliver maximum portability and safety criticality following the guidance of FACE and the Modular Open Systems Approach (MOSA)” said Greg Rose, vice president of marketing and product management at DDC-I. “Much like the primary goals of FACE and MOSA our safety-critical DO-178C DAL A verified RTOS, Deos, has been designed to enable software reuse and applications portability since its first certification baseline in 1998.”

Deos is a safety-critical embedded RTOS that employs patented cache partitioning, memory pools, and safe scheduling to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS on multi-core processors. First certified to DO-178 DAL A in 1998, Deos provides a FACE™ Conformant Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

SafeMC™ technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multi-core performance without compromising safety-critical task response and guaranteed execution time. SafeMC employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multi-core systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

For more information about the FACE and SOSA Expo and TIM, please visit https://meet.opengroup.org/event/TIM/2021-Sep-14.  For more info on the FACE and SOSA Consortia, please visit:  www.opengroup.org/face and www.opengroup.org/sosa.

About DDC-I, Inc. DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, and Ada application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit http://www.ddci.com/pr2105.

DDC-I and LDRA Accelerate Compliance for Multicore Aerospace Systems

Integration delivers powerful, efficient means of developing, verifying, and hosting production code in safety-critical cockpit environments requiring software verified to the guidance of DO-178C/ED-12C

 

Phoenix, AZ – August 18, 2021 – DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced an enhanced integration between the Deos safety-critical RTOS and LDRA’s automated software verification, source code analysis, and unit testing tools for aerospace and defense applications. The integrated solution enables avionic system manufacturers to quickly and cost-effectively develop, debug, test, and deploy software that can be readily verified to the most demanding guidance of DO-178C/ED-12C Design Assurance Level (DAL A).

With the completion of this integration, the latest LDRA tool suite now supports the latest version of DDC-I’s Deos™ safety-critical real-time operating system (RTOS) with its SafeMC™ multicore technology. The LDRA tool suite provides enhancements for source code static analysis, software dynamic analysis (including MC/DC coverage on the host and target), and software unit testing on the host and target. Together, these enhancements improve code quality, safety, and security, as well as reduce testing time and cost. They also help developers manage and achieve compliance for increasingly complex safety-critical cockpit applications that utilize emerging technologies like modular avionics and multicore processors to build safer, more economical, more capable aircraft.

“The integration of Deos with the LDRA tool suite gives avionics developers the platform they need for rapid prototyping, testing, certification and deployment of modular, reusable, safety-critical applications that comply with DO-178C and FACE,” said Greg Rose, vice president of marketing and product management at DDC-I. “The updated Deos and LDRA integration should prove especially attractive to developers who want to utilize the latest multicore technology while addressing worst-case execution requirements as defined in the FAA’s CAST-32A position paper for Multi-core Processors.”

“Proving the avionics system is properly partitioned to avoid interference from competing cores is critical, yet it’s a nearly impossible challenge without the proper development and testing tools,” said Ian Hennell, Operations Director, LDRA. “Using the LDRA/DDC-I integration, developers can ensure the software is safe and meets the most demanding avionics standards such as DO-178C and the Future Airborne Capability EnvironmentTM (FACE) Technical Standard.”

To facilitate the development and testing of software that conforms with safety-critical standards such as DO-178C/ED-12C, and portability and interoperability standards such as the FACE Technical Standard, the integrated Deos/LDRA integration provides:

  • Full source-code coverage analysis (under Deos SafeMC).
  • An efficient unit testing harness for fully automated unit and regression testing (also under Deos with SafeMC).
  • The ability to analyze and visualize coding standards compliance within the OpenArbor IDE.
  • Support for x86, PowerPC, and ARM single and multicore processors.
  • Compliance with industry- and user-defined coding standards such as MISRA and CERT.
  • Automated test case, harness and stub generation for robustness testing with the LDRA tool suite.
  • Automatic production of software certification and approval evidence underpinned by LDRA’s ISO 9001:2015 certified Quality Management System, and the LDRA tool suite’s TÜV SÜD and SGS-TÜV Saar certification.

Deos is a safety-critical embedded RTOS that employs patented cache partitioning, memory pools, and safe scheduling to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS on multi-core processors. First certified to DO-178 DAL A in 1998, Deos provides a FACE™ Conformant Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

SafeMC™ technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multi-core performance without compromising safety-critical task response and guaranteed execution time. SafeMC employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multi-core systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, and Ada application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit04http://www.ddci.com/pr2104.

DDC-I Expands with New Sales Office in Huntsville; Adds Regional Sales Manager

Phoenix, AZ. May 25, 2021.  DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced that it has expanded its operations in the southeast region with a new office in Huntsville, Alabama. The new office will focus on the burgeoning military/aerospace sector in the Huntsville area with an emphasis on providing COTS solutions based on dominant interoperability standards such as the Future Airborne Capability Environment (FACE™) and MOSA. The office will be headed by Rusty DeShazo, a 30-year veteran in the military/aerospace and commercial embedded systems sectors.

“We are excited to add Rusty to the team, expand and solidify our operations in the Huntsville area,” said Bob Morris, president/CEO at DDC-I. “Huntsville and the surrounding areas are home to a number of major mil/aero installations, and our Deos™ DO-178C RTOS is the preferred platform for developers of advanced avionic subsystems that require a portable, upgradeable COTS solution that delivers best-in-class safety-critical performance, FACE™ 3.0 conformance and rapid safety certifiability.”

Huntsville, Alabama is home to the Redstone Arsenal, which includes the US Army Aviation and Missile Command, US Army DEVCOM AvMC, Missile Defense Agency and NASA’s Marshall Space Flight Center. Alabama is also home to the Anniston Army Depot, Fort Rucker, and Maxwell-Gunter AFB, with the Pensacola Naval Air Station close by.

Deos is a safety-critical embedded RTOS that employs patented cache partitioning, memory pools, and safe scheduling to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS on multi-core processors. First certified to DO-178 DAL A in 1998, Deos provides a FACE™ Conformant Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

SafeMC™ technology for Deos extends its advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multi-core performance without compromising safety-critical task response and guaranteed execution time. SafeMC employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multi-core systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, Ada, and JOVIAL application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit http://www.ddci.com/pr2103.

DDC-I’s Deos Safety-Critical Real-Time Operating System to Fly Aboard Bell 360 Invictus

Bell’s Future Attack Reconnaissance Aircraft competitive prototype will use DDC-I’s FACE Conformant, safety-critical Deos RTOS for Data Concentrator Unit

Phoenix, AZ. March 25, 2021.  DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced that its Deos™ safety-critical DO-178 real-time operating system has been selected by Bell Textron, Inc. for use in a Data Concentrator Unit (DCU) that will fly aboard the Bell 360 Invictus as part of the U.S. Army’s Future Attack Reconnaissance Aircraft (FARA) Competitive Prototype program. The Bell 360 is an innovative, high-performance aircraft that will deliver soldiers an agile and lethal solution to win on the modern battlefield.

“We are excited for the opportunity to fly aboard this impressive aircraft,” said Greg Rose, vice president of marketing and product management at DDC-I. “FACE™ 3.0 conformance, best-in-class safety-critical performance and rapid safety certifiability make Deos the preferred platform for advanced avionics subsystems, especially those requiring portable, upgradeable multicore solutions that meet the CAST-32A objectives.”

“The Bell 360 Invictus offers great improvements in capability for soldiers and our team has designed this aircraft to mitigate technical risk and improve survivability at an affordable cost,” said Jayme Gonzalez, program manager, Bell 360 Invictus. “We look forward to working with DDC-I as their proven solutions incorporate the required Modular Open Systems Approach (MOSA). These modular DCUs work well with Bell’s intent to deliver a versatile weapon system that emphasizes operational availability, sustainability, and maintainability for attack and reconnaissance missions.”

DCUs are modular sensor interface units that collect and convert analog flight data, managing, monitoring, and controlling discrete analog and avionics bus data inputs from aircraft equipment and sensors, to and from the Vehicle Management System (VMS) and Heath Usage Monitoring System (HUMS). The DCU provides a variety of standard communication interfaces, including MIL-STD-1553, RS-422, ARINC-429 and Ethernet. It also supports hundreds of digital and analog I/O interfaces, including programmable discrete, A/D, D/A, strain Gauge, thermocouple, RTD, variable reluctance/monopole, chip-detect and LVDT with AC reference measurement signals.

Deos is a safety-critical embedded RTOS that employs patented cache partitioning, memory pools, and safe scheduling to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS on multi-core processors. First certified to DO-178 DAL A in 1998, Deos provides a FACE Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

SafeMC™ technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multi-core performance without compromising safety-critical task response and guaranteed execution time. SafeMC employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multi-core systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, Ada, and JOVIAL application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit http://www.ddci.com/pr2102.

DDC-I Announces Additional FACE™ 3.0 Conformance for Deos Safety-Critical Real-Time Operating System Running on ARM and x86 Processors

Builds on existing FACE Conformant PowerPC offering

 

Phoenix, AZ. December 9, 2020.  DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced Future Airborne Capability Environment ™ (FACE) 3.0 Conformance for its Deos safety-critical DO-178 real-time operating system and OpenArbor development tools running on ARM and x86 processors. The certification covers the FACE™ Technical Standard, Edition 3.0 Safety Base and Security Profiles for the Operating System Segment (OSS).

“The addition of ARM and the x86 to our existing PowerPC FACE offering gives DDC-I the most robust, multi-platform, multi-core, FACE conformant RTOS and development tool portfolio in the avionics industry,” said Greg Rose, vice president of marketing and product management at DDC-I. “Avionics developers targeting ARM, PowerPC, and x86 processors now have a seamless FACE conformant RTOS platform that combines best-in-class performance and safety certifiability with enhanced application portability across the industry’s most advanced avionics processors.”

The Deos RTOS Platform for FACE Technical Standard 3.0 combines the time- and space-partitioned Deos RTOS and SafeMC multi-core technology with RTEMS (Real Time Executive for Multiprocessor Systems), a mature, deterministic, open systems, hard real-time POSIX executive. Deos provides ARINC 653 APEX interfaces and multi-core scheduling. A para-virtualized implementation of RTEMS, which runs in a secure Deos partition, provides POSIX interfaces and scheduling. The integrated platform combines the strengths and pedigree of both ARINC 653 and POSIX RTOSs, providing the industry standard interfaces and feature set required for conformance with the FACE Technical Standard Safety Base and Security and Operating System Profiles, all in a time and space partitioned, hard-real-time, multi-core execution model.

Deos is a safety-critical embedded RTOS that employs patented cache partitioning, memory pools, and safe scheduling to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS on multi-core processors. First certified to DO-178 DAL A in 1998, Deos provides a FACE Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

SafeMC™ technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multi-core performance without compromising safety-critical task response and guaranteed execution time. SafeMC™ employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multi-core systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

About The Open Group FACE Consortium

The Future Airborne Capability Environment (FACE) Consortium, a consortium of The Open Group, is an aviation-focused professional group made up of U.S. industry suppliers, customers, and users. The FACE Consortium provides a vendor-neutral forum for industry and the U.S. government to work together to develop and consolidate the open standards, best practices, guidance documents and business models necessary to achieve these results.  For more information visit: www.opengroup.org/face.

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, Ada, and JOVIAL application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit www.ddci.com/pr2010.

DDC-I, Presagis, and CoreAVI Offer Free June 18 Webinar on Avionics Cockpit Display Development

Phoenix, AZ. June 18, 2020.  DDC-I, a leading supplier of software and professional services for mission and safety-critical applications, today announced that it will collaborate with Presagis and CoreAVI to offer a complimentary webinar on avionics cockpit design, Thursday June 18 at 11:00 AM EDT. The one-hour webinar will focus on the challenges facing designers of modern human-machine interfaces for avionics cockpits, and how they can utilize tools, technology, and techniques to de-risk the safety-critical architectures underpinning these systems.

Register Now –  https://bit.ly/June2020Webcast

Developers of modern avionics cockpit display systems face a myriad of challenges in developing versatile, high-performance HMIs that are reusable, certifiable, meet the latest standards and deliver the highest degree of safety criticality. This webcast, featuring industry experts in RTOS, graphics, and modeling, will show developers how they can take advantage of modern capabilities and new developments in devices, tools and software to meet these challenges while minimizing risk. These experts will examine system architecture, modeling, rapid prototyping and validation, as well as performance, reuse, certification, field maintenance, data fusion, and legacy systems. All these will be examined in relation to the latest standards, including, DO-178C, ARINC 653, ARINC 661, DO-297, CAST-32A, and FACE.

“This is a valuable webinar for developers who want to hit the ground running with their next HMI project,” said Greg Rose, vice president of marketing and product management at DDC-I. “This webinar touches all of the bases, from the RTOS, hardware and modeling tools, through the graphical interface and all of the major standards.”

Deos is a safety-critical embedded RTOS that employs patented slack scheduling, memory pools and cache partitioning to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS. First certified to DO-178 DAL A in 1998, Deos provides a FACE Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

SafeMC™ technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multicore performance without compromising safety-critical task response and guaranteed execution time. SafeMC™ employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multicore systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, Ada, and JOVIAL application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit https://www.ddci.com/pr2007.

DDC-I’s Deos RTOS Selected by MDA to Develop Communications System for SNC’s Dream Chaser Cargo System

Phoenix, AZ. June 10, 2020. DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced that its Deos safety-critical real-time operating system has been selected by Macdonald Dettwiler and Associates (MDA) for use in a communications subsystem destined for Sierra Nevada Corporation’s (SNC) Dream Chaser® Cargo System. The subsystem will provide on-board communication signal processing capabilities for the Dream Chaser® Cargo System, a cargo transportation spacecraft being developed by SNC under the NASA Commercial Resupply Services (CRS2) program. The spacecraft is scheduled for at least six cargo delivery missions to and from the International Space Station between 2020 and 2024.

“We are excited to have been selected by MDA to provide the safety-critical RTOS platform for this prestigious project,” said Greg Rose, vice president of marketing and product management at DDC-I. “Deos has a proven pedigree in the avionics industry, and our DO-178C processes track well with NASA and ESA assurance requirements. Add to that a modular, reusable architecture that decouples I/O device drivers from the RTOS and BSP and you have a tailor made platform for rapid development, certification, and deployment of the most demanding safety- and mission-critical applications.”

“We have enjoyed working with DDC-I to develop advanced new communications capabilities for SNC’s Dream Chaser Cargo System,” said Steven Tasker, Program Manager – DCCS Comm Subsystem at MDA. “DDC-I’s track record in the safety-critical industry, together with their advanced RTOS capabilities, certification expertise and customer support were certainly key factors in our decision to bring them aboard.”

Deos is a field-proven, safety-critical, avionics RTOS that has been utilized to host a multitude of flight-critical functions, such as air data computers, air data inertial reference units, cockpit displays, flight control, flight management, engine control, and many more.  Built from the ground up for safety-critical applications, Deos features a unique modular design with time and space partitioning, providing the easiest, lowest cost path to DO-178C DAL A certification, the highest level of safety criticality. DDC-I’s SafeMC™ technology extends DDC-I’s advanced time and space partitioning capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multicore performance without compromising safety-critical task response and guaranteed execution times.

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, Ada, and JOVIAL application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit http://www.ddci.com/pr2006