DO-178

DDC-I Expands with New Sales Office in Huntsville; Adds Regional Sales Manager

Phoenix, AZ. May 25, 2021.  DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced that it has expanded its operations in the southeast region with a new office in Huntsville, Alabama. The new office will focus on the burgeoning military/aerospace sector in the Huntsville area with an emphasis on providing COTS solutions based on dominant interoperability standards such as the Future Airborne Capability Environment (FACE™) and MOSA. The office will be headed by Rusty DeShazo, a 30-year veteran in the military/aerospace and commercial embedded systems sectors.

“We are excited to add Rusty to the team, expand and solidify our operations in the Huntsville area,” said Bob Morris, president/CEO at DDC-I. “Huntsville and the surrounding areas are home to a number of major mil/aero installations, and our Deos™ DO-178C RTOS is the preferred platform for developers of advanced avionic subsystems that require a portable, upgradeable COTS solution that delivers best-in-class safety-critical performance, FACE™ 3.0 conformance and rapid safety certifiability.”

Huntsville, Alabama is home to the Redstone Arsenal, which includes the US Army Aviation and Missile Command, US Army DEVCOM AvMC, Missile Defense Agency and NASA’s Marshall Space Flight Center. Alabama is also home to the Anniston Army Depot, Fort Rucker, and Maxwell-Gunter AFB, with the Pensacola Naval Air Station close by.

Deos is a safety-critical embedded RTOS that employs patented cache partitioning, memory pools, and safe scheduling to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS on multi-core processors. First certified to DO-178 DAL A in 1998, Deos provides a FACE™ Conformant Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

SafeMC™ technology for Deos extends its advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multi-core performance without compromising safety-critical task response and guaranteed execution time. SafeMC employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multi-core systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, Ada, and JOVIAL application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit http://www.ddci.com/pr2103.

DDC-I’s Deos Safety-Critical Real-Time Operating System to Fly Aboard Bell 360 Invictus

Bell’s Future Attack Reconnaissance Aircraft competitive prototype will use DDC-I’s FACE Conformant, safety-critical Deos RTOS for Data Concentrator Unit

Phoenix, AZ. March 25, 2021.  DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced that its Deos™ safety-critical DO-178 real-time operating system has been selected by Bell Textron, Inc. for use in a Data Concentrator Unit (DCU) that will fly aboard the Bell 360 Invictus as part of the U.S. Army’s Future Attack Reconnaissance Aircraft (FARA) Competitive Prototype program. The Bell 360 is an innovative, high-performance aircraft that will deliver soldiers an agile and lethal solution to win on the modern battlefield.

“We are excited for the opportunity to fly aboard this impressive aircraft,” said Greg Rose, vice president of marketing and product management at DDC-I. “FACE™ 3.0 conformance, best-in-class safety-critical performance and rapid safety certifiability make Deos the preferred platform for advanced avionics subsystems, especially those requiring portable, upgradeable multicore solutions that meet the CAST-32A objectives.”

“The Bell 360 Invictus offers great improvements in capability for soldiers and our team has designed this aircraft to mitigate technical risk and improve survivability at an affordable cost,” said Jayme Gonzalez, program manager, Bell 360 Invictus. “We look forward to working with DDC-I as their proven solutions incorporate the required Modular Open Systems Approach (MOSA). These modular DCUs work well with Bell’s intent to deliver a versatile weapon system that emphasizes operational availability, sustainability, and maintainability for attack and reconnaissance missions.”

DCUs are modular sensor interface units that collect and convert analog flight data, managing, monitoring, and controlling discrete analog and avionics bus data inputs from aircraft equipment and sensors, to and from the Vehicle Management System (VMS) and Heath Usage Monitoring System (HUMS). The DCU provides a variety of standard communication interfaces, including MIL-STD-1553, RS-422, ARINC-429 and Ethernet. It also supports hundreds of digital and analog I/O interfaces, including programmable discrete, A/D, D/A, strain Gauge, thermocouple, RTD, variable reluctance/monopole, chip-detect and LVDT with AC reference measurement signals.

Deos is a safety-critical embedded RTOS that employs patented cache partitioning, memory pools, and safe scheduling to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS on multi-core processors. First certified to DO-178 DAL A in 1998, Deos provides a FACE Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

SafeMC™ technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multi-core performance without compromising safety-critical task response and guaranteed execution time. SafeMC employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multi-core systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, Ada, and JOVIAL application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit http://www.ddci.com/pr2102.

DDC-I Announces Additional FACE™ 3.0 Conformance for Deos Safety-Critical Real-Time Operating System Running on ARM and x86 Processors

Builds on existing FACE Conformant PowerPC offering

 

Phoenix, AZ. December 9, 2020.  DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced Future Airborne Capability Environment ™ (FACE) 3.0 Conformance for its Deos safety-critical DO-178 real-time operating system and OpenArbor development tools running on ARM and x86 processors. The certification covers the FACE™ Technical Standard, Edition 3.0 Safety Base and Security Profiles for the Operating System Segment (OSS).

“The addition of ARM and the x86 to our existing PowerPC FACE offering gives DDC-I the most robust, multi-platform, multi-core, FACE conformant RTOS and development tool portfolio in the avionics industry,” said Greg Rose, vice president of marketing and product management at DDC-I. “Avionics developers targeting ARM, PowerPC, and x86 processors now have a seamless FACE conformant RTOS platform that combines best-in-class performance and safety certifiability with enhanced application portability across the industry’s most advanced avionics processors.”

The Deos RTOS Platform for FACE Technical Standard 3.0 combines the time- and space-partitioned Deos RTOS and SafeMC multi-core technology with RTEMS (Real Time Executive for Multiprocessor Systems), a mature, deterministic, open systems, hard real-time POSIX executive. Deos provides ARINC 653 APEX interfaces and multi-core scheduling. A para-virtualized implementation of RTEMS, which runs in a secure Deos partition, provides POSIX interfaces and scheduling. The integrated platform combines the strengths and pedigree of both ARINC 653 and POSIX RTOSs, providing the industry standard interfaces and feature set required for conformance with the FACE Technical Standard Safety Base and Security and Operating System Profiles, all in a time and space partitioned, hard-real-time, multi-core execution model.

Deos is a safety-critical embedded RTOS that employs patented cache partitioning, memory pools, and safe scheduling to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS on multi-core processors. First certified to DO-178 DAL A in 1998, Deos provides a FACE Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

SafeMC™ technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multi-core performance without compromising safety-critical task response and guaranteed execution time. SafeMC™ employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multi-core systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

About The Open Group FACE Consortium

The Future Airborne Capability Environment (FACE) Consortium, a consortium of The Open Group, is an aviation-focused professional group made up of U.S. industry suppliers, customers, and users. The FACE Consortium provides a vendor-neutral forum for industry and the U.S. government to work together to develop and consolidate the open standards, best practices, guidance documents and business models necessary to achieve these results.  For more information visit: www.opengroup.org/face.

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, Ada, and JOVIAL application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit www.ddci.com/pr2010.

DDC-I, Presagis, and CoreAVI Offer Free June 18 Webinar on Avionics Cockpit Display Development

Phoenix, AZ. June 18, 2020.  DDC-I, a leading supplier of software and professional services for mission and safety-critical applications, today announced that it will collaborate with Presagis and CoreAVI to offer a complimentary webinar on avionics cockpit design, Thursday June 18 at 11:00 AM EDT. The one-hour webinar will focus on the challenges facing designers of modern human-machine interfaces for avionics cockpits, and how they can utilize tools, technology, and techniques to de-risk the safety-critical architectures underpinning these systems.

Register Now –  https://bit.ly/June2020Webcast

Developers of modern avionics cockpit display systems face a myriad of challenges in developing versatile, high-performance HMIs that are reusable, certifiable, meet the latest standards and deliver the highest degree of safety criticality. This webcast, featuring industry experts in RTOS, graphics, and modeling, will show developers how they can take advantage of modern capabilities and new developments in devices, tools and software to meet these challenges while minimizing risk. These experts will examine system architecture, modeling, rapid prototyping and validation, as well as performance, reuse, certification, field maintenance, data fusion, and legacy systems. All these will be examined in relation to the latest standards, including, DO-178C, ARINC 653, ARINC 661, DO-297, CAST-32A, and FACE.

“This is a valuable webinar for developers who want to hit the ground running with their next HMI project,” said Greg Rose, vice president of marketing and product management at DDC-I. “This webinar touches all of the bases, from the RTOS, hardware and modeling tools, through the graphical interface and all of the major standards.”

Deos is a safety-critical embedded RTOS that employs patented slack scheduling, memory pools and cache partitioning to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS. First certified to DO-178 DAL A in 1998, Deos provides a FACE Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

SafeMC™ technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multicore performance without compromising safety-critical task response and guaranteed execution time. SafeMC™ employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multicore systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, Ada, and JOVIAL application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit https://www.ddci.com/pr2007.

DDC-I’s Deos RTOS Selected by MDA to Develop Communications System for SNC’s Dream Chaser Cargo System

Phoenix, AZ. June 10, 2020. DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced that its Deos safety-critical real-time operating system has been selected by Macdonald Dettwiler and Associates (MDA) for use in a communications subsystem destined for Sierra Nevada Corporation’s (SNC) Dream Chaser® Cargo System. The subsystem will provide on-board communication signal processing capabilities for the Dream Chaser® Cargo System, a cargo transportation spacecraft being developed by SNC under the NASA Commercial Resupply Services (CRS2) program. The spacecraft is scheduled for at least six cargo delivery missions to and from the International Space Station between 2020 and 2024.

“We are excited to have been selected by MDA to provide the safety-critical RTOS platform for this prestigious project,” said Greg Rose, vice president of marketing and product management at DDC-I. “Deos has a proven pedigree in the avionics industry, and our DO-178C processes track well with NASA and ESA assurance requirements. Add to that a modular, reusable architecture that decouples I/O device drivers from the RTOS and BSP and you have a tailor made platform for rapid development, certification, and deployment of the most demanding safety- and mission-critical applications.”

“We have enjoyed working with DDC-I to develop advanced new communications capabilities for SNC’s Dream Chaser Cargo System,” said Steven Tasker, Program Manager – DCCS Comm Subsystem at MDA. “DDC-I’s track record in the safety-critical industry, together with their advanced RTOS capabilities, certification expertise and customer support were certainly key factors in our decision to bring them aboard.”

Deos is a field-proven, safety-critical, avionics RTOS that has been utilized to host a multitude of flight-critical functions, such as air data computers, air data inertial reference units, cockpit displays, flight control, flight management, engine control, and many more.  Built from the ground up for safety-critical applications, Deos features a unique modular design with time and space partitioning, providing the easiest, lowest cost path to DO-178C DAL A certification, the highest level of safety criticality. DDC-I’s SafeMC™ technology extends DDC-I’s advanced time and space partitioning capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multicore performance without compromising safety-critical task response and guaranteed execution times.

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, Ada, and JOVIAL application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit http://www.ddci.com/pr2006

RTI Connext DDS Micro Provides FACE™ Conformant Communications Framework for DDC-I’s Deos Avionics Real-Time Operating System

Phoenix, AZ. January 31, 2020.  DDC-I, a leading supplier of software and professional services for mission and safety-critical applications, today announced the integration of Real-Time Innovations (RTI)  Connext® DDS Micro connectivity framework with DDC-I’s Deos avionics real-time operating system. The integrated platform provides a modular, DDS framework for real-time messaging and information sharing between Deos and FACETM applications.

“We’re excited to be working with RTI to offer avionics developers a certified conformant FACE Transport Services Segment (TSS) platform with DDS connectivity that facilitates seamless, safety-critical communications and data exchange between FACE applications and our DO-178 Deos real-time operating system,” said Greg Rose, vice president of marketing and product management at DDC-I. “The integrated solution combines world-class performance and safety certification capabilities with a proven DDS framework that streamlines communications, accelerates integration, and enhances application portability.”

“Deos is an excellent safety-critical RTOS platform for our connectivity software,” states Chip Downing, senior market development director of aerospace and defense at RTI. “Together, Deos and Connext DDS Micro provide an open architecture solution that combines FACE, POSIX, and DDS into a COTS solution stack that reduces  integration and certification risk while accelerating time to market and deployment of critical avionics systems.”

RTI Connext DDS Micro provides a small-footprint modular messaging solution and software connectivity framework for resource-limited devices that facilitates information sharing in real time, enabling applications to work together as an integrated system. Based on the Object Management Group® (OMG®) Data Distribution Service™ (DDS) standard, RTI Connext DDS features peer-to-peer communications, optimized publish/subscribe and real-time Quality of Service (QoS).

RTI Connext DDS Micro is designed to meet the demanding requirements of critical airborne systems requiring low latency, high reliability, scalability, security and COTS DO-178C DAL A certification evidence. RTI Connext TSS is the first certified, conformant FACE Transport Services Segment (TSS), enabling rapid interoperability of FACE system components and networked platforms.

Deos is a safety-critical embedded RTOS that employs patented slack scheduling, memory pools and cache partitioning to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS. First certified to DO-178 DAL A in 1998, Deos provides a FACE Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

SafeMC™ technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multicore performance without compromising safety-critical task response and guaranteed execution time. SafeMC™ employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multicore systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, Ada, and JOVIAL application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit https://www.ddci.com/pr2001.

About RTI

Real-Time Innovations (RTI) is the Industrial Internet of Things (IIoT) connectivity company. The RTI Connext® databus is a software framework that shares information in real time, making applications work together as one, integrated system. It connects across field, fog and cloud. Its reliability, security, performance and scalability are proven in the most demanding industrial systems. Deployed systems include medical devices and imaging; wind, hydro and solar power; autonomous planes, trains and cars; traffic control; Oil and Gas; robotics, ships and defense.

RTI is the largest vendor of products based on the Object Management Group (OMG) Data Distribution Service™ (DDS) standard. RTI is privately held and headquartered in Sunnyvale, Calif.

Media Contacts:

Madeline Kalicka

Karbo Communications for RTI

240-427-8961

RTI@karbocom.com

 

Cameron Emery

Director of Corporate Communications at RTIcameron@rti.com

Gables Engineering Selects DDC-I’s Deos DO-178 RTOS to Develop New Avionics Touch Screen Display

Deos real-time operating system to provide safety-critical platform for advanced new avionics display  

Phoenix, AZ. November 6, 2019. DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced that Gables Engineering has selected DDC-I’s Deos safety-critical real-time operating system for use in a new avionics touch screen display. The new display is currently undergoing final development and verification.

“We are excited to have been selected by Gables Engineering to provide the safety-critical RTOS platform for this advanced avionics display,” said Greg Rose, Vice President of Marketing and Product Management at DDC-I. “Advanced features like robust time/space partitioning, ARINC-653 compatibility, and reusable certification evidence make Deos an ideal environment for developing, hosting, and certifying software for DO-178 avionics applications.”

“We are pleased to be working with DDC-I to offer our avionics customers advanced touch screen display capabilities that leverage a best-in-class safety-critical RTOS,” added Rick Finale, Vice President of Engineering and Business Development at Gables Engineering. “All Deos deliveries have been timely, of good quality, and with strong technical support. Deos provides a flexible off-the-shelf solution that greatly accelerates the deployment of high-performance avionics systems requiring the highest level of design assurance,” commented Rene Ramos, Director of Software Engineering at Gables.

DDC-I’s Deos is a field proven, safety-critical, avionics RTOS that has been utilized to host a multitude of flight-critical functions, such as air data computers, air data inertial reference units, cockpit displays, flight control, flight management, engine control, and many more.  Built from the ground up for safety-critical applications, Deos features a unique modular design with time and space partitioning, providing the easiest, lowest cost path to DO-178C DAL A certification, the highest level of safety criticality. DDC-I’s SafeMC™ technology extends DDC-I’ s advanced time and space partitioning capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multicore performance without compromising safety-critical task response and guaranteed execution times.

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, Ada, and JOVIAL application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit http://www.ddci.com/pr1915.

Curtiss-Wright and DDC-I Collaborate for First Live Demonstration of Deos™ DO-178 Level A RTOS on Safety-Certifiable Arm® V3-1703 Single Board Computer

 NXP® LAYERSCAPE® 1043A (LS1043A) ARM QUAD-CORE A53-BASED RTCA/DO-254 SAFETY-CERTIFIABLE COTS SBC NOW SUPPORTS DDC-I’S DEOS RTOS

Multicore for Avionics (MCFA) Workshop, Bee Cave, Texas – October 29, 2019 – Curtiss-Wright’s Defense Solutions division, a trusted leading supplier of rugged safety-certifiable commercial off-the-shelf (COTS) avionics, in collaboration with DDC-I, today announced that DDC-I’s Deos DO-178 RTCA/DO-254 Design Assurance Level (DAL) A safety-critical, multi-core real-time operating system (RTOS) will be publicly demonstrated for the first time running on the Curtiss-Wright’s NXP Layerscape LS1043A Arm quad-core A53 processor-based V3-1703 module, the industry’s first DAL A safety-certifiable COTS Arm processor-based single board computer (SBC).  The demonstration, hosted in DDC-I’s booth at the 2019 Multicore for Avionics Workshop (MCFA), will feature the Deos RTOS running on the 3U OpenVPX™ V3-1703 and provide an integration example for system designers who are interested in building complete rugged DO-254/DO-178 safety-certifiable avionics solutions based on the Deos RTOS for aerospace, military, and other high reliability markets.

“We are seeing increased interest in the use of Arm-based SBCs in aerospace applications,” said Lynn Bamford, Senior Vice President and General Manager, Defense and Power.  “Support for DDC-I Deos DO-178C DAL A safety-certifiable RTOS on our DO-254 safety-certifiable Arm-based V3-1703 single board computer provides avionics system designers with the critical building blocks they need to quickly and cost-effectively develop Arm-based safety-certifiable systems.”

“Deos SafeMC™ technology provides innovative features, such as cache partitioning, that help developers of Arm-based multicore avionics software segregate shared L2 cache on both a core-by-core and application-by-application basis, thereby bounding interference, improving determinism and reducing software jitter,” said Greg Rose, vice president of marketing and product managementat DDC-I. “As highlighted in the FAA’s CAST-32A paper, reducing interference is essential for certifying multicore systems.  This is one of the reasons that Deos has proven to be an excellent RTOS for modern avionics systems, and why may avionics suppliers are migrating to Deos world-wide.”

About the DDC-I Deos RTOS

DDC-I’s Deos is a field proven, safety-critical avionics RTOS that has been utilized to host a multitude of flight-critical functions, such as air data computers, air data inertial reference units, cockpit displays, flight control, flight management, engine control, and many more.  Built from the ground up for safety-critical applications, Deos features a modular design with time and space partitioning that provides a straightforward, low-cost path to DO-178C DAL A certification, the highest level of safety criticality.

DDC-I’s SafeMC technology extends DDC-I’s advanced time and space partitioning capabilities to multiple cores, enabling developers of safety-critical systems to maximize multicore performance without compromising safety-critical task response and guaranteed execution times.

SafeMC employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multicore systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

About the V3-1703 SBC

The recently introduced the V3-1703, the safety-certifiable variant of the VPX3-1703 SBC, is a low-power module (14W to 21W depending on frequency and application) ideal for size, weight and power (SWaP) constrained deployed applications. This rugged, highly capable module brings Arm’s unparalleled power-to-performance ratio to safety-critical avionics systems. Designed specifically to address DO-254 avionics applications, the V3-1703 is available with data artifacts up to DAL A to help accelerate and ease the system certification process and greatly reduce program risks and costs.

The V3-1703’s LS1043A processor, supported by NXP with a 15-year lifecycle, features four low-power Arm A53 cores that provide a good balance between performance, power, and cost for deployed defense and aerospace systems. What’s more, because A53 cores are well known and field proven, they provide an ideal high-confidence pedigree for demanding and critical safety-certifiable applications such as avionics and motor/engine control. The fully rugged V3-1703 is ideal for use in mission computers, as well as general-purpose SBC applications, both safety-certifiable and non-certifiable.

Safety Certifiable for All Major Processor Architectures

Curtiss-Wright is the only COTS vendor with announced products that provide support for DO-254 hardware along with DO-178C software safety-certifiable operating environments from our operating systems partners across all three major processor architectures: Arm, Intel® and Power Architecture. This makes Curtiss-Wright uniquely positioned to support avionics system developers seeking to deploy embedded solutions that feature dissimilar redundant system architectures (i.e., using two or more different processor types while also running different operating systems) in order to meet the stringent requirements of DAL A certification.

DO-254 DAL A is required for safety-critical avionics applications such as flight control computers, fly-by-wire, flight displays, air data systems, and full authority digital engine control. A white paper discussing the benefits of dissimilar redundant architectures, “Why Dissimilar Redundant Architectures Are a Necessity for DAL A” is available for download. A second white paper, “Is Arm the Future for Airborne Platforms in Military and Aerospace?” highlights the benefits of Arm-based processing in safety-critical deployed applications.

Using the rugged V3-1703 module, avionics system designers can easily and rapidly integrate complete high-performance rugged DO-254/DO-178 safety-certifiable system solutions that run the Deos RTOS. The Deos RTOS has successfully met DO-178 DAL A certification objectives and has received Future Airborne Capability Environment (FACE) Conformance certification for FACE™ Technical Standard, Edition 3.0 Safety Base and Security Profiles for the Operating System Segment (OSS).

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, Ada, and JOVIAL application development. For more information regarding DDC-I products, contact DDC-I at sales@ddci.com or visit https://www.ddci.com.

For more information about Curtiss-Wright’s Defense Solutions division, please visit www.curtisswrightds.com.

About Curtiss-Wright Corporation

Curtiss-Wright Corporation is a global innovative company that delivers highly engineered, critical function products and services to the commercial, industrial, defense and energy markets.  Building on the heritage of Glenn Curtiss and the Wright brothers, Curtiss-Wright has a long tradition of providing reliable solutions through trusted customer relationships. The company employs approximately 9,000 people worldwide. For more information, visit www.curtisswright.com.

 ###

Note: All trademarks are property of their respective owners.

DDC-I Announces Deos RTOS Conformance to FACE™ Technical Standard, Edition 3.0 Safety Base and Security Profiles

Phoenix, AZ. September 23, 2019.  DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced that it has received the Future Airborne Capability Environment (FACE) Conformance Certificate for its Deos DO-178C certifiable real-time operating system (RTOS). The certification covers the FACE™ Technical Standard, Edition 3.0 Safety Base and Security Profiles for the Operating System Segment (OSS).

The Deos RTOS Platform for FACE Technical Standard 3.0 combines the time- and space-partitioned Deos RTOS and SafeMC multicore technology with RTEMS (Real Time Executive for Multiprocessor Systems), a mature, deterministic, open systems, hard real-time POSIX executive. Deos provides ARINC 653 APEX interfaces and multicore scheduling. A para-virtualized implementation of RTEMS, which runs in a secure Deos partition, provides POSIX interfaces and scheduling. The integrated platform combines the strengths and pedigree of both ARINC 653 and POSIX RTOSs, providing the industry standard interfaces and feature set required for conformance with the FACE Technical Standard Safety Base and Security and Operating System Profiles, all in a time and space partitioned, hard-real-time, multicore execution model.

“FACE 3.0 Conformance marks a major milestone in our continued commitment to supporting avionics industry standards that give our avionics customers a RTOS platform that combines best-in-class performance and safety certifiability with enhanced applications portability,” said Greg Rose, vice president of marketing and product management at DDC-I. “DDC-I has been a pioneer in providing mission- and safety-critical software to the military and aerospace industry for over 35 years and will continue that leadership through support of the FACE standardization efforts and delivery of our world-class FACE conformant RTOS solutions to the avionics community.”

“The FACE Consortium is a government and industry partnership committed to providing a framework for software portability that reduces cost and speeds time to market by fostering standard, open interfaces that enhance portability, interoperability, and reuse,” said Joe Carter, The Open Group FACE Consortium Steering Committee Chair, US Army Program Executive Office Aviation. “The team at PEO Aviation is excited to welcome DDC-I’s FACE conformant Deos RTOS to further promote competition, product excellence and interoperability within the universe of FACE conformant software solutions available to the avionics community.”

Deos is a safety-critical embedded RTOS that employs patented slack scheduling, memory pools, and cache partitioning to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS. First certified to DO-178 DAL A in 1998, Deos provides a FACE Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces.

SafeMC™ technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multicore performance without compromising safety-critical task response and guaranteed execution time. SafeMC™ employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multicore systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

 About The Open Group FACE Consortium

The Future Airborne Capability Environment (FACE) Consortium, a consortium of The Open Group, is an aviation-focused professional group made up of U.S. industry suppliers, customers and users. The FACE Consortium provides a vendor-neutral forum for industry and the U.S. government to work together to develop and consolidate the open standards, best practices, guidance documents and business models necessary to achieve these results.  For more information visit: www.opengroup.org/face.

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, Ada, and JOVIAL application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit https://www.ddci.com/pr1913.

DDC-I Demonstrates FACE-Aligned RTOS Platform at US Air Force FACE and SOSA Expo and Technical Interchange Meeting

Phoenix, AZ. September 17, 2019.  DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced that it will demonstrate a FACE-aligned RTOS solution at the US Air Force FACE and SOSA Expo and Technical Interchange Meeting, Booth #72, which will be held on September 17 at the Dayton Convention Center in Dayton, OH. DDC-I and its partners will host a variety of live demonstrations that utilize Deos to provide high-end synthetic vision, display, and data marshalling.

The FACE and SOSA Expo and Technical Interchange Meeting, hosted by the US Air Force Life Cycle Management Center, charts the progress made in the use of modular open systems in both the Future Airborne Capability Environment and the Sensor Open System Architecture consortia. Targeting program managers, contractors and suppliers across all branches of the service, the expo and TIM will give consortia members an opportunity to present their latest results and showcase their FACE and SOSA solutions for war-fighting applications.

“We’re excited to be working with the FACE Consortium and our partners to offer integrated FACE solutions that deliver maximum portability and safety criticality,” said Greg Rose, vice president of marketing and product management at DDC-I. “Like FACE, our safety-critical DO-178C RTOS solutions have been crafted from the ground up for reuse and binary portability, from the microkernel architecture to industry standard software interfaces.”

DDC-I will host a pair of live demonstrations at its booth. The first demo, employing a ruggedized Curtiss Wright NXP Power Architecture T2080-based VPX3-152 OpenVPX single-board computer equipped with DDC-I’s safety-critical Deos real-time operating system and CoreAVI OpenGL graphics, will utilize Ensco IData and IDataMap display software to provide 3D synthetic vision. The second demo, featuring an i.MX8 reference platform running Deos and CoreAVI graphics, will showcase high-end display capabilities utilizing ANSYS display software. Deos technology will also be featured in a number of partner booths, including a helmet mounted avionics display system from Elbit Systems and data marshalling technology from Kihomac.

Deos is a safety-critical embedded RTOS that employs patented slack scheduling, memory pools, and cache partitioning to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS. First certified to DO-178 DAL A in 1998, Deos provides a FACE Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces. SafeMC™ technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multicore performance without compromising safety-critical task response and guaranteed execution time.

For more information about the FACE and SOSA Consortia, please visit:  www.opengroup.org/face and www.opengroup.org/sosa.

 

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, Ada, and JOVIAL application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit https://www.ddci.com/pr1912.