

Page 1

 WHITE PAPER

Cache Partitioning Improves Cache
Performance for Safety-Critical Applications

A big challenge facing developers of safety-critical software applications is managing
contention for shared resources such as cache. Benchmarks demonstrate that cache
contention can increase worst-case execution times (WCETs) up to 4x higher than
average-case execution times (ACETs). Unless developers can bound and control
these WCETs, processor utilization is seriously diminished and analysis of inter-
application interference patterns greatly complicate safety certification. One way that
developers can effectively manage this contention and boost available CPU time to time
critical tasks is to utilize DDC-I’s cache partitioning (patent pending).

Worst-case execution

All applications compete for shared cache (L2, and/or L3 if present). This greatly
increases the potential for interference whereby the worst case execution time of a
safety critical application is significantly impacted by another application that is memory
intensive and constantly overruns the cache, causing cache misses for the safety critical
program. Consequently, the impacted software may overrun its execution time budget
and/or miss deadlines, resulting in unsafe failure conditions.

Processors are designed to optimize average-case execution times (ACETs), often at
the expense of worst-case execution times (WCETs). But while optimized ACETs work
well in non-critical applications, developers of certifiable, safety-critical software must
design and budget application execution times for WCET behavior. Consequently,
applications require significantly higher execution time budgets (much of it often
unused), resulting in significantly degraded CPU time budget available for time critical
tasks in the system as a whole.

Cache partitioning reduces WCET and increases CPU utilization by reducing cache
competition and making it easier to bound and control interference patterns. By setting
aside dedicated partitions for critical applications, developers can reduce interference
from applications running in the system and provide timely, deterministic access to
cache. This reduces the amount time that must be budgeted for critical tasks, thereby
shrinking the delta between ACET and WCET and boosting overall CPU utilization.

Page 2

Cache Partitioning

In a typical processor configuration the CPU has a small cache (10’s of KB) as the L1
cache and then a larger L2 cache (100’s of KB to a few MB). With this configuration,
the L1 cache is small and closely coupled to the larger L2 cache; therefore its cache
effects are negligible in the system impact analysis. The main impact on system
performance is contention in the L2 cache.

In this configuration, all applications executing in the system compete for the entire L2
cache in normal operation. If application A on Core 0 uses data that maps to the same
cache line(s) as application B, then a collision occurs.

For example, suppose A’s data resides in L2; access to that data will take very few
processor cycles. Then, suppose B accesses data that happens to map to the same L2
cache line as A’s data. At that point, A’s data must be evicted from L2 (including a
potential “write-back” to RAM), and B’s data must be brought into cache from RAM.
The time required to handle this collision is typically charged to B. Then, suppose A
accesses its data again. Since that data is no longer in L2 (B’s data is in its place), B’s
data must be evicted from L2 (including a potential “write-back” to RAM), and A’s data
must be brought back into cache from RAM. The time required to handle this collision is
typically charged to A.

Most times, A and B will encounter such collisions infrequently. In those cases, their
respective execution times can be considered as “average case” (i.e., ACETs).
However, on occasion, their data accesses will collide at a high frequency. In these
cases, their respective execution times must be considered as “worst case” (i.e.,
WCETs).

When developing certifiable, safety-critical software, one must design and budget an
application’s execution time for worst-case behavior, since such software must have
adequate time budget to complete its intended function every time it executes, lest it
cause an unsafe failure condition (note that a safety-critical RTOS must enforce time
partitioning, wherein each application has a fixed amount of CPU time budget to
execute).

Cache partitioning reduces WCET by reducing cache collisions among competing
applications. This partitioning eliminates the possibility of applications interfering with
one another via L2 collisions. Without such interference, the deltas between application
WCETs and its ACETs often are often considerably lower than is the case without
cache partitioning. By bounding and controlling these interference patterns, application
execution times are more deterministic and time budgets can be of shorter duration,
thereby keeping processor utilization high.

Test Environment and Applications

In the following test cases we will show how cache partitioning improves the WCETs on
a single core processor. In the future, as multicore processors become more widely

Page 3

used in safety critical environments, the benefits of cache partitioning will become
amplified as multiple applications on multiple cores can start interfering with each other
at any time during normal execution due to collisions in the L2 cache.

Cache partitioning tests were performed on a 1.6-GHz Atom processor (x86) with 32KB
of L1 data cache, 24KB of L1 instruction cache, and a 512KB unified L2 cache. A single
core x86 processor was used for these tests. Cache partitioning capability delivers
benefits to any applications competing for L2 cache. Additionally, it does not depend on
any features that are special or unique to x86 processors and applies equally well to
other processor types (such as ARM or PowerPC).

Four memory-intensive test applications were used, all using a range of data/code
sizes, sequential and random access strategies, and various working set sizes:

 read-only
 write-only
 copy
 code execution

Tests were run with and without a “cache trasher” application, which evicts test
application data/code from L2 and “dirties” L2 with its own data/code. In effect, the
cache trasher puts L2 into a worst-case state from a test application’s perspective. That
is, the cache trasher mimics real-world scenarios, where different applications run
concurrently and compete for the shared L2 cache.

Each test application was executed under three scenarios:

In scenario 1, without cache partitioning and without cache trashing, the test application
competes for the entire 512KB L2 along with the RTOS kernel and a variety of debug
tools. This test establishes baseline average performance, wherein each test executes
with an “average” amount of L2 contention.

In scenario 2, without cache partitioning and with cache trashing, the test application
competes for the entire 512KB L2 along with the RTOS kernel, a variety of debug tools
and the rogue cache trasher application. This test establishes baseline worst-case
performance, wherein each test executes with a worst-case amount of L2 interference
from other applications, primarily the cache trasher.

In Scenario 3, with cache partitioning and with cache trashing, three L2 partitions are
created: a 256KB partition allocated to the test application; a 64KB partition allocated to
the RTOS kernel and a variety of debug tools; and a 192KB partition allocated to the
rogue cache trasher application. This scenario establishes optimized worst-case
performance, wherein each test executes within its own L2 partition with no interference
from other applications, including the cache trasher.

Page 4

Results and Benefits of Cache Partitioning

Results of the read-only test application demonstrate the benefits of cache partitioning.
These results are representative of the other three tests.

With no cache partitioning and no cache trashing (scenario 1, ACET), the read-only test
averaged 105 usecs to execute given a working set size of 512KB. With no cache

partitioning, but with cache
trashing (scenario 2,
WCET1), the test took
roughly 400 usecs to
execute given the same
size working set (a 280%
increase). However, with
cache partitioning and
cache trashing (scenario
3, WCET2), the average
execution time drops back
to 117 usecs, or just 11%
higher than the ACET.

These results clearly demonstrate the efficacy of cache partitioning for an application
that performs a large number of reads per period. Though difficult to discern here, the
impact on bounding WCETs is more pronounced when the application’s working set
size fits within the cache partition that it’s using (in this case, 256KB). This result is
expected due to the nature of cache. That said, embedded, real-time applications tend
to have relatively small working set sizes, in these cases cache partitioning will benefit
most applications.

Results for the write-only test were similar to the read-only test, though more
pronounced for smaller working sets. For larger working sets, results showed relatively
small differences between WCETs with and without cache partitioning. Results for the
copy test were similar to the read-only test, though more pronounced for smaller
working sets. For larger working sets, results were less dramatic, but still showed
significant improvement (roughly 2x) in WCETs with cache partitioning.

Note that it is possible for applications executing in the same cache partition to interfere
with each other. However, such interference is much easier to analyze and bound than
the unpredictable interference patterns that may occur between applications executing
on different cores with shared cache. In those situations, applications could be mapped
to separate cache partitions.

Figure 1 – Cache Partitioning Impact on Read-Only Tests

Page 5

The benchmark results clearly demonstrate that cache partitioning technology provides
an effective means of bounding and controlling interference patterns in cache for safety-
critical time-partitioned applications. In particular, worst-case execution times are
bounded and controlled much more tightly when the cache is partitioned.
Consequently, application developers can set relatively tight, yet safe, execution time
budgets thereby maximizing processor utilization.

For Additional Information

©2015 – For details about DDC-I, Inc. or DDC-I product offerings, contact DDC-I at 4600 E. Shea Blvd.,
Suite #102, Phoenix, AZ 85028; phone 602-275-7172, fax 602-252-6054, email sales@ddci.com or visit
http://www.ddci.com.

mailto:sales@ddci.com�
http://www.ddci.com/�

